# A Large Prime Gap 

By Sol Weintraub


#### Abstract

A prime gap of 654 ( 653 consecutive composites) is found near $1.1 \times 10^{16}$.


A prime gap of 654 was found following the prime 11000001446613 353. The highest gap previously published, 652, follows the prime 2614941710559 , (Brent [1]). Only smaller gaps occur below that prime. Theoretically, a gap of magnitude at least $n$ can be found following the integer $n!+1$ but this is of little practical value. For example, $654!\sim 1.47 \times 10^{1559}$.

Only four other gaps exceeding 500 were found in the interval between $N=1.1$ $\times 10^{16}$ and $N+1.5 \times 10^{9}$. According to Shanks' [2] conjecture, a gap of approximate size 1364 should exist somewhere below this $N$; but gaps of that size are very rare.
The five gaps exceeding 500 in this interval are

| GAP | FOLLOWING |
| :---: | :---: |
| 546 | 11000000002331551 |
| 510 | 11000000370769591 |
| 528 | 11000000410410853 |
| 504 | 1100000059377389 |
| 654 | 11000001446613353 |

Listed below are the maximum gaps in each interval of 100 million, beginning at $N=1.1 \times 10^{16}$ and ending at $N+1.5 \times 10^{9}$ :
$546,468,484,510,528,504,494,484,460,486,486,496,496,476,654$
e.g., the first number, 546 , is the maximum gap between $N=1.1 \times 10^{16}$ and $N+10^{8}$.

For purposes of comparison, the maximum gaps (per 100 million) beginning at $1.1 \times 10^{13}$ are:

428, 396, 388, 370, 438, 356, 492, 380, 394, 390, 440, 396, 418, 384, 392.
Again, this shows that the occurrence of large prime gaps is exceedingly rare.
Department of Mathematics
Queens College, CUNY
Flushing, New York 11367

[^0]Received February 21, 1980; revised July 7, 1980.
1980 Mathematics Subject Classification. Primary 10A20, 10A25, 10A40.


[^0]:    $\rightarrow$ R. Brent, "The first occurrence of large gaps between successive primes," Math. Comp., v. 27, 1973, pp. 959-963.
    2. D. Shanks, "On maximal gaps between successive primes," Math. Comp., v. 18, 1964, pp. 646-651.

